

Ascletis Pharma (1672.HK) Investor Day

Jan 4, 2024, Shanghai

Ascletis Pharma(HK.1672) Investor Day

Jan 4th 2024 Shanghai

Disclaimer

Certain statements contained in this presentation and in the accompanying oral presentation as well as subsequent discussion (if any) may constitute forward-looking statements. Examples of such forward-looking statements include statements regarding Ascletis' research and discovery, pre-clinical and clinical programs and plans of candidate drugs, the conduct of clinical trials and expected data readouts, planned commercial product launches, the advancement of and anticipated clinical development, regulatory milestones and commercialization of Ascletis' medicines and drug candidates. Actual results may differ materially from those indicated in the forward-looking statements as a result of various important factors, including Ascletis' ability to demonstrate the efficacy and safety of its drug candidates; the clinical results for its drug candidates, which may not support further development or marketing approval; actions of regulatory agencies, which may affect the initiation, timing and progress of clinical trials and marketing approval; Ascletis' ability to achieve commercial success for its marketed medicines and drug candidates, if approved; Ascletis' ability to obtain and maintain protection of intellectual property for its medicines and technology; Ascletis reliance on third parties to conduct drug development, manufacturing and other services; Ascletis' limited experience in obtaining regulatory approvals and commercializing pharmaceutical products and its ability to obtain additional funding for operations and to complete the development and commercialization of its drug candidates and achieve and maintain profitability; the impact of the COVID-19 pandemic on Ascletis' clinical development, regulatory, commercial and other operations, as well as those risks discussed in the section entitled "Major Risk Factors, Uncertainties and Risk Control" in Ascletis' most recent Annual Report filed with the Hong Kong Stock Exchange. The performance and results achieved by Ascletis in this presentation and in the acc

The information, statements and opinions contained in this presentation and in the accompanying oral presentation as well as subsequent discussion (if any) do not constitute an offer to sell or solicitation of any offer to subscribe for or purchase any securities or other financial instruments or any advice or recommendation in respect of such securities or other financial instruments in any jurisdiction. In particular, this presentation is not an offer of securities for sale nor a solicitation of an offer to buy securities.

This presentation is provided for investment purposes only. All information in this presentation is as of the date of this presentation, and Ascletis undertakes no duty to update such information unless required by law, and no liability in the event that any of the forward-looking statements or opinions do not materialize or turn out to be incorrect.

This presentation and the accompanying oral presentation contain data and information obtained from third-party studies and internal company analysis of such data and information. Ascletis has not independently verified the data and information obtained from these sources. Forward-looking information obtained from these sources is subject to the same qualifications noted above.

Overview

R&D Pipeline

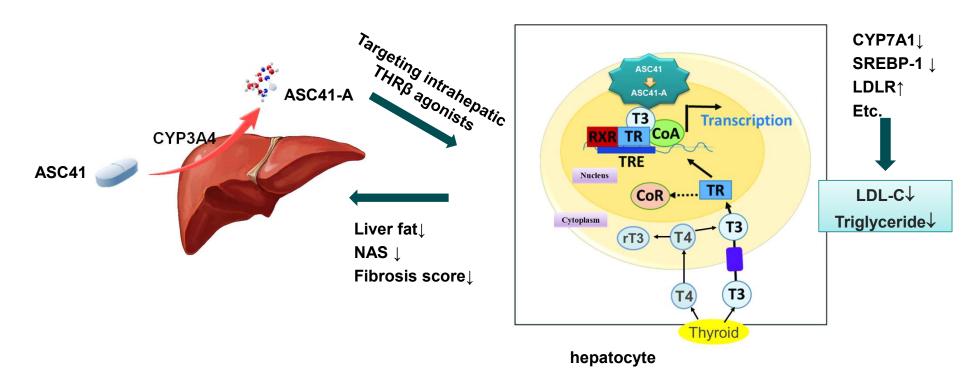
Therapeutical Area	Product (Modality)	Target	Indication	Commercial Rights	Pre-IND	IND	Phase I	Phase II	Phase III
Viral Diseases	ASC22 (Subcutaneous mAb)	PD-L1	CHB functional cure	Global ¹					
	ASC40 (Oral small molecule)	FASN	NASH	Greater China ²					
NASH	ASC41 (Oral small molecule)	THRβ	NASH	Global					
	ASC43F FDC (Oral small molecule)	THRβ+FXR	NASH	Global					
Oncolony	ASC40 (Oral small molecule) +Bevacizumab	FASN+ VEGF	Recurrent glioblastoma	Greater China ²					
Oncology	ASC61 (Oral small molecule)	PD-L1	Advanced solid tumor	Global					
Acne	ASC40 (Oral small molecule)	FASN	ACNE	Greater China ²					

ASC22 is licensed from Suzhou Alphamab Co.,Ltd. ("Alphamab") for the worldwide exclusive rights.
 ASC40 is licensed from Sagimet Biosciences Inc. for the exclusive rights in the Greater China.

Focus on Unmet Medical Needs

China Patients	Therapeutic Area	Current Situation	Highlights	Ascletis Updates
120mm	Acne	 Moderate and severe acne patients account for 23-35% Isotretinoin and antibiotics have many side effects 	 Innovative mechanism inhibits sebum secretion Excellent phase II clinical trial data, good safety profile; oral once daily, convenient for administration 	 Phase III trial of ASC40 initiated in Q4, 2023 China's top dermatology clinical center –Huashan Hospital, Fudan University–leads the study
86mm	HBV	 NAs: high relapse rate once off treatment Interferon: various side effects 	 ASC22 is the world's fastest-progressing immunotherapy for the treatment of hepatitis B through PD-1/PD-L1 mechanism 	• Interim data of ASC22 IIb expansion cohort: 21.6% pts with baseline HBsAg≤100 reached HBsAg loss with 24 wk treatment
48mm	NASH	 No NASH drug approved by FDA,EMA,NMPA yet GLP-1 has no improvements for liver fibrosis 	 THR-β: ASC41 First-in-China/ Third-in-Global FASN: ASC40 First-in-class in the world 	 ASC41: positive interim data of Phase II potentially BIC THR-β agonist globally ASC40: Phase II liver biopsy data to release soon
40~60k	GBM	 x 5-year survival rate is extremely low(5.8%) for GBM x High relapse rate after surgery, limited effective treatments 	 Novel lipid metabolism mechanisms for the treatment of solid tumors Phase II clinical data: PFS6=31.4% 	 Over 120 patients enrolled in Phase III (180 totally) May have enough events for interim analysis of PFS

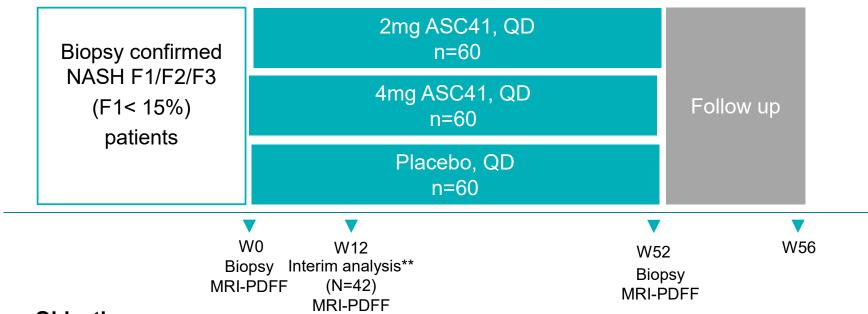
Pipeline Updates



ASC41 NASH

ASC41: A Liver Targeting Thyroid Hormone Receptor Beta (THRβ) Agonist

■ ASC41 is a liver targeted small molecule which is converted to its active metabolite ASC41-A - a potent and selective THRβ agonist



GANNEX

ASC41: A Potential best-in-class THRβ Agonist

- ASC41 is a liver-targeted prodrug, and its active metabolite is a highly selective THRβ agonist.
- In two NASH animal models, at 1/10 dose of resmetirom (MGL-3196), ASC41 demonstrated the same improvement of liver steatosis, inflammation and fibrosis.
- Commercially ready oral tablet formulation developed with in-house proprietary technology
- 2 China Phase I studies completed
 - Statistically significant and clinical meaning reductions in lipids such as LDL-C starting from 2 mg QD
- 2 US bridging studies completed
 - > No significant difference in drug exposure among Chinese and Americans; no significant drug-drug interactions
- 1 China Phase Ib study completed
 - ➤ 28 day, 10 mg QD in 20 overweight and obese subjects with elevated LDL-C > 110 mg/dL; statistically significant reduction in lipids such as LDL-C.
- Based on above studies, 2 mg and 4 mg once-daily doses have been selected for a 52-week Phase II trial in biopsyconfirmed NASH patients
 - Pre-specified interim analysis at Week 12 demonstrated ASC41 as a potential best-in-class THRβ agonist versus other THRβ agonists currently at clinical or registration stages

ASC41: 52-week Phase II Study in Biopsy-confirmed NASH patients*

Primary Objective

To evaluate the efficacy of ASC41 tablet in biopsy-confirmed noncirrhotic NASH patients by a histological reduction in NAS \geq 2 points that results from reduction of necro-inflammation (inflammation or ballooning) without worsening fibrosis.

Secondary objectives

1. NASH resolution; 2. Fibrosis improvement.

^{*}Phase II study protocol was agreed by both US FDA and China NMPA

^{**}Pre-specified interim analysis conducted when 42 patients completed 12-week treatment of ASC41/placebo.

Summary of Interim Week12 Data from 52-Week ASC41 Tablet Study

- Up to 68.2% mean liver fat reduction from baseline in biopsy-confirmed non-alcoholic steatohepatitis (NASH) patients receiving 12-week treatment of ASC41 tablet
- Up to 93.3% patients achieved at least a 30% relative reduction in liver fat after 12-week treatment
- At Week 12, placebo-adjusted mean reductions in alanine aminotransferase (ALT) and aspartate aminotransferase (AST) from baseline were up to 37.8% and 41.5%, respectively
- At Week 12, placebo-adjusted mean reductions in low-density lipoprotein cholesterol (LDL-C), total cholesterol (TC) and triglyceride (TG) from baseline were up to 27.7%, 23.4% and 46.5%, respectively
- Adverse events (AEs), including gastrointestinal (GI)-related AEs, were similar among the cohorts receiving ASC41 tablet treatment versus the placebo

Reduction in Liver Fat Content from Baseline at Week 12 by MRI-PDFF

	Placebo	ASC41 Tablet		
	(n = 14)	2 mg, QD (n = 13)	4 mg, QD (n = 15)	
Mean baseline liver fat content	18.2%	17.8%	18.9%	
Mean relative change in liver fat content from baseline	-13.1%	-55.0% (p = 0.0001 vs placebo)	-68.2% (p $<$ 0.0001 vs placebo)	
Median relative change in liver fat content from baseline	-5.8%	-48.8%	-70.1%	
Percentage of patients achieving ≥ 30% relative reduction in liver fat content from baseline	21.4%	92.3% (p = 0.0002 vs placebo)	93.3% (p $<$ 0.0001 vs placebo)	

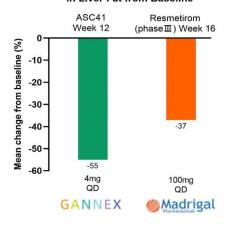
Reduction in Liver Inflammatory Biomarkers from Baseline at Week 12

- Mean ALT and AST at baseline ranged from 65.9 to 84.8 U/L and 44.2 to 53.8 U/L, respectively, across ASC41 tablet and placebo cohorts.
- At Week 12, placebo-adjusted mean absolute reductions in ALT and AST from baseline were up to 34.2 U/L and 21.4 U/L, respectively.
- At Week 12, placebo-adjusted mean relative reductions in ALT and AST from baseline were up to 37.8% and 41.5%, respectively.
- Placebo-adjusted percentage of patients achieving mean ALT decrease > 17 U/L was up to 51.9%.
- Statistically significant and clinical meaningful reductions in ALT and AST in patients receiving ASC41 tablet treatment notably differentiate ASC41 from other THRβ agonists currently at clinical or registration stages.
 - > Decline in serum ALT in NASH patients is associated with improvement in liver histology.

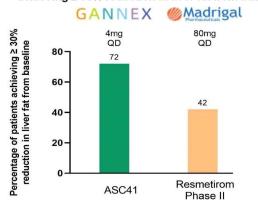
Reduction in Lipids from Baseline at Week 12

	Placebo	ASC41 Tablet		
	(n = 14)	2 mg, QD (n = 13)	4 mg, QD (n = 15)	
	4.00/	-19.4%	-23.4%	
LDL-C, mean change from baseline	4.3%	(p = 0.0002 vs placebo)	(p < 0.0001 vs placebo)	
TC moon shange from bosoling	3.4%	-16.8%	-20.0%	
TC, mean change from baseline	3.470	(p $<$ 0.0001 vs placebo)	(p < 0.0001 vs placebo)	
TG, mean change from baseline	3.9%	-30.6%	-42.6%	
10, mean change nom baseline	J.970	(p = 0.0001 vs placebo)	(p $<$ 0.0001 vs placebo)	

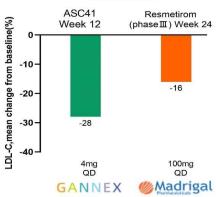
- HDL-C remained unchanged from baseline among the cohorts receiving ASC41 tablet treatment or placebo.
- Reductions in these lipids improve a patient's overall cardiometabolic profile and may reduce the risk of cardiovascular-related events.


Safety and Tolerability

- Levels of thyroid axis hormones, including thyroid stimulating hormone (TSH), free triiodothyronine (fT3) and free thyroxine (fT4) were relatively unchanged from baseline among the cohorts receiving ASC41 tablet treatment versus the placebo.
- Changes in vital signs and electrocardiogram (ECG) were similar among patients receiving ASC41 tablet treatment versus placebo.


	Placebo	ASC41 Tablet		
	(n = 14)	2 mg, QD (n = 13)	4 mg, QD (n = 15)	
TEAEs ^[1] Number of subjects (%)	13(92.9%)	13(100%)	15(100%)	
Drug-related TEAEs [2]	6(42.9%)	7(53.9%)	7(46.7%)	
Grade 1	6(42.9%)	7(53.9%)	7(46.7%)	
Drug-related GI AEs	2(14.3%)	3(23.1%)	1(6.7%)	
Nausea	0(0.0%)	0(0.0%)	0(0.0%)	
Vomiting	0(0.0%)	0(0.0%)	0(0.0%)	
Diarrhea	1(7.1%)	3(23.1%)	1(6.7%)	
Abdominal distension	1(7.1%)	0(0.0%)	0(0.0%)	
Abdominal pain (upper)	0(0.0%)	0(0.0%)	0(0.0%)	
Constipation	0(0.0%)	0(0.0%)	0(0.0%)	
Dyspepsia	0(0.0%)	0(0.0%)	0(0.0%)	
Frequent bowel movements	0(0.0%)	0(0.0%)	0(0.0%)	

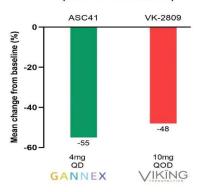
THRβ Agonists: ASC41 vs Resmetirom


Placebo Adjusted Mean Relative Change in Liver Fat from Baseline

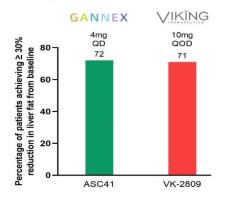
Placebo Adjusted Percentage of patients achieving ≥ 30% reduction in liver fat from baseline

Placebo Adjusted Reduction in lipid from baseline

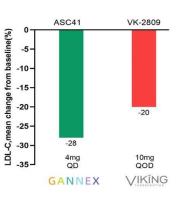
Placebo-adjusted mean reductions in liver inflammatory biomarkers from baseline at Week 12	ASC41 tablet, stable at room temperature	Resmetirom tablet ^[1] , stable at room temperature
ALT	Up to 37.8% (Statistically significant difference vs placebo)	No statistically significant difference vs placebo
AST	Up to 41.5% (Statistically significant difference vs placebo)	No statistically significant difference vs placebo


	ASC41 tablet		Resmetirom tablet Phase III	
	Placebo (n = 14)	2mg/4mg QD (n=28)	Placebo (n = 321)	100mg QD (n=323)
TEAEs Number of subjects(%)	13(92.9%)	28(100%)	269 (92.2%)	296 (91.6%)
Drug-related TEAEs	6(42.9%)	14(50%)	86 (26.8%)	134 (41.5%)
Drug-related TEAEs leading to study discontinuation	0(0.0%)	1(3.6%)	8 (2.5%)	22 (6.8%)
Drug-related GI AEs	2(14.3%)	4(14.3%)	NA	NA
Nausea	0(0.0%)	0(0.0%)	40 (12.5%)	62 (19.2%)
Diarrhea	1(7.1%)	4(14.3%)	50 (15.6%)	109 (33.7%)
Vomiting	0(0.0%)	0(0.0%)	17 (5.3%)	35 (10.8%)
Abdominal distension	1(7.1%)	0(0.0%)	NA	NA

^{[1] 36-}week phase 2 and 52-week phase 3


^[2] NA:Not avaliable

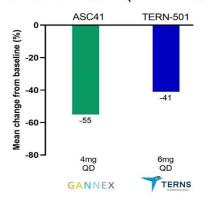
THRβ Agonists: ASC41 vs VK-2809


Placebo Adjusted Mean Relative Change in Liver Fat from Baseline (MRI-PDFF at Week 12)

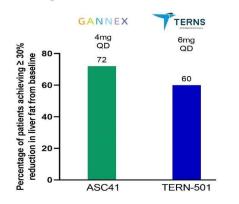
Placebo Adjusted Percentage of patients achieving ≥ 30% reduction in liver fat from baseline

Placebo Adjusted Reduction in lipid from baseline at Week 12

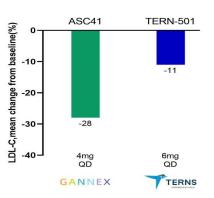
Placebo-adjusted mean reductions in liver inflammatory biomarkers from baseline at Week 12	ASC41 tablet, stable at room temperature	VK2809 Capsule ^[1] , stable only under refrigeration
ALT	Up to 37.8% (Statistically significant difference vs placebo)	Similar to placebo
AST	Up to 41.5% (Statistically significant difference vs placebo)	Similar to placebo


	ASC41 tablet		VK2809 Capsule	
	Placebo (n = 14)	2mg/4mg QD (n=28)	Placebo (n = 65)	10mg QOD (n=61)
TEAEs Number of subjects(%)	13(92.9%)	28(100%)	47(72.3%)	54(88.5%)
Drug-related TEAEs	6(42.9%)	14(50%)	22(33.8%)	23(37.7%)
Drug-related TEAEs leading to study discontinuation	0(0.0%)	1(3.6%)	5(7.7%)	5(8.2%)
Drug-related GI AEs	2(14.3%)	4(14.3%)	12(18.5%)	7(11.5%)
Nausea	0(0.0%)	0(0.0%)	5(7.7%)	3(4.9%)
Diarrhea	1(7.1%)	4(14.3%)	2(3.1%)	3(4.9%)
Vomiting	0(0.0%)	0(0.0%)	NA	NA
Abdominal distension	1(7.1%)	0(0.0%)	NA	NA

[1]Viking press release, May 2023

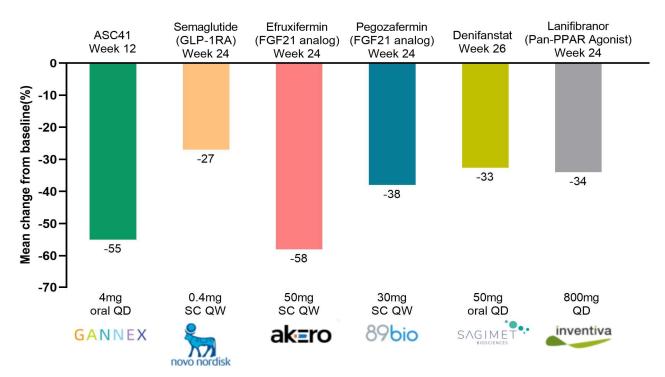


THRβ Agonists: ASC41 vs TERN-501


Placebo Adjusted Mean Relative Change in Liver Fat from Baseline(MRI-PDFF at Week 12)

Placebo Adjusted Percentage of patients achieving ≥ 30% reduction in liver fat from baseline

Placebo Adjusted Reduction in lipid from baseline at Week 12



Placebo-adjusted mean reductions in liver inflammatory biomarkers from baseline at Week 12	ASC41 tablet, stable at room temperature	Tern-501 ^[1] ,formualtion and storage condition unknown
ALT	Up to 37.8% (Statistically significant difference vs placebo)	Similar to placebo
AST	Up to 41.5% (Statistically significant difference vs placebo)	Similar to placebo

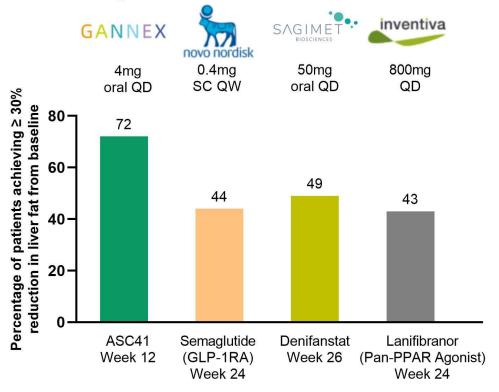
	ASC41 tablet		Tern-501	
	Placebo (n = 14)	2mg/4mg QD (n=28)	Placebo (n =24)	6mg QD (n=22)
TEAEs Number of subjects(%)	13(92.9%)	28(100%)	NA	NA
Drug-related TEAEs	6(42.9%)	14(50%)	NA	NA
Drug-related TEAEs leading to study discontinuation	0(0.0%)	1(3.6%)	1(4.2%)	1(4.5%)
Drug-related GI AEs	2(14.3%)	4(14.3%)	2(8.3%)	2(9.1%)
Nausea	0(0.0%)	0(0.0%)	0(0.0%)	0(0.0%)
Diarrhea	1(7.1%)	4(14.3%)	1(4.2%)	1(4.5%)
Vomiting	0(0.0%)	0(0.0%)	1(4.2%)	0(0.0%)
Abdominal distension	1(7.1%)	0(0.0%)	0(0.0%)	0(0.0%)

ASC41 vs GLP-1,FGF21, FASN and PPAR: Liver Fat Reduction

Placebo Adjusted Mean Relative Change in Liver Fat from Baseline

^{1.} Semaglutide: Flint, A., et al.[J] Aliment Pharmacol Ther, (2021).DOI: 10.1111/apt.16608;

^{2.} Efruxifermin: Stephen A. Harrison., et al. AASLD 2022 Abstract #39094;

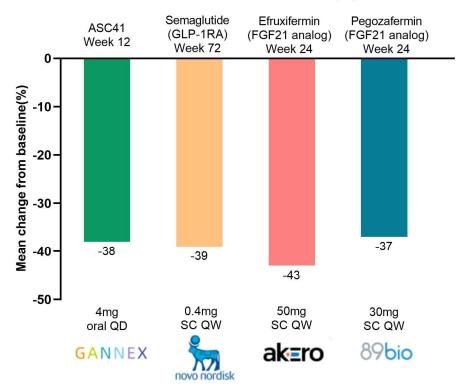

^{3.} Pegozafermin: https://ir.89bio.com/news-releases/news-release-details/89bios-phase-2b-enliven-trial-pegozafermin-nonalcoholic;

^{4.} Denifanstat: Rohit Loomba, et al. EASL 2023 Abstract #OS-061;

^{5.} Lanifibranor: https://inventivapharma.com/wp-content/uploads/2023/06/IVA-Topline-results-lanifibranor-in-T2D-and-NAFLD-06282023.pdf

ASC41 vs GLP-1,FASN and PPAR: ≥30% Liver Fat Reduction

Placebo Adjusted Percentage of patients achieving ≥ 30% reduction in liver fat from baseline


^{1.} Semaglutide: Flint, A., et al.[J] Aliment Pharmacol Ther, (2021).DOI: 10.1111/apt.16608;

Denifanstat: Rohit Loomba, et al. EASL 2023 Abstract #OS-061;

^{3.} Lanifibranor: https://inventivapharma.com/wp-content/uploads/2023/06/IVA-Topline-results-lanifibranor-in-T2D-and-NAFLD-06282023.pdf

ASC41 vs GLP-1 and FGF21: Reduction in ALT

Placebo Adjusted Mean reduction in ALT from Baseline (%)

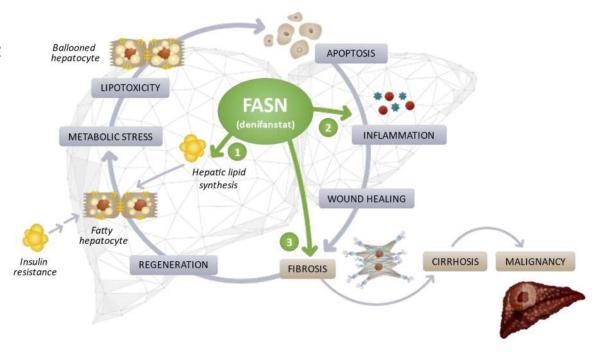
- 1. Semaglutide:Newsome, P. N., et al.[J] N Engl J Med, (2021).DOI: 10.1056/NEJMoa2028395;
- Efruxifermin: Stephen A. Harrison., et al. AASLD 2022 Abstract #39094;
- Pegozafermin: https://ir.89bio.com/news-releases/news-release-details/89bios-phase-2b-enliven-trial-pegozafermin-nonalcoholic;

Conclusions of ASC41 Interim Data

- Interim data in liver fat and lipids at Week 12 demonstrated ASC41 as a potential best-in-class THRβ Agonist vs other THRβ agonists currently at clinical or registration stages
- Statistically significant and clinical meaningful reductions in ALT and AST in patients receiving ASC41 tablet treatment notably differentiate ASC41 from other THRβ agonists
- ASC41 tablet showed excellent safety and tolerability profile, including GI.

Patents of ASC41

	Application Date	Publication Number	Patents Applied	Patents Authorized	Pending
Formulation Patent(Tablet)	2020/3/27	US20210308155A1 (U.S.) CN115427022A (China) WO2021190624A1(PCT)	U.S., China and Globally	U.S.	China and Globally
Crystal Patent	2020/9/30	CN114315902A (China) WO2022067602A1 (Globally)	China and Globally	1	China and Globally
Synthesis Patent	2020/2/18	US11292805B2 (U.S.) US20220332738A1 (U.S.) CN113336792A (China)	U.S. and China	U.S.	China
Composition Patent	2021/7/6	WO2023280152A1 (PCT)	Globally	1	\


ASC40 NASH

ASC40(FASN): Novel Mechanism for NASH

MoA of ASC40 for NASH Treatment

- Block steatosis via inhibiting de novo lipogenesis in hepatocytes
- Reduce inflammation via preventing immune cell activation
- Blunt fibrosis via inhibiting stellate cell activation

ASC40-IIb Interim Analysis Cohort Represents Target Patient Population

Mean(SD)	Placebo (n=22)	ASC40-Denifanstat 50mg (n=30)	Combined
Age (years)	56.8 (9.4)	56.1 (12.4)	56.4 (11.1)
Female/Male (%)	14 (63.6%) / 8 (36.4%)	17 (56.7%) / 13 (43.3%)	31 (59.6%) / 21 (40.4%)
Not Hispanic or Latino	16 (72.7%)	24 (80.0%)	40 (76.9%)
Weight (kg)	97.8 (21.9)	100.9 (21.2)	99.6 (21.4)
Diabetes (% T2DM)	13 (59.1%)	21 (70.0%)	34 (65.4%)
F2/F3 (%)	12 (54.5%) / 10 (45.5%)	12 (40.0%) / 18 (60.0%)	24 (46.2%) / 28 (53.8%)
MRI-PDFF (%)	21.78 (5.46)	17.46 (6.36)	19.29 (6.32)
Fibroscan (kPa)	10.67 (4.07)	12.29 (7.33)	11.56 (6.04)
ALT (U/L)	69.77 (42.50)	57.14 (27.55)	62.70 (35.11)
AST (U/L)	51.00 (29.87)	44.43 (22.65)	47.32 (26.00)
LDL (mg/dL)	111.37 (40.6)	96.29 (50.27)	102.86 (46.4)
ELF	9.70 (0.76)	9.73 (0.76)	9.72 (0.75)
PRO-C3 cobas® (ng/mL)	35.72 (15.71)	32.54 (11.19)	33.91 (13.28)

Patients enrolled:

Typical F2/F3 NASH populationMiddle-aged	High % of diabetesHigh liver fat by MRI-PDFF	Elevated liver enzymes: inflammationNon-invasive markers of fibrosis consistent with F2/F3
---	---	---

Interim Data from ASC40 Phase IIb Clinical Trial: 67% of Patients Reduced Liver Fat by More Than 30%

	ASC40 50 mg (n=30)	Placebo (n=22)	P-value vs placebo
Relative reduction in liver fat	-34.1%	- 1.5%	p<0.001
≥30% reduction of liver fat (responder rate)	67%	18%	p<0.01
ALT (U/L)	- 16.5	- 4.0	p<0.05
Dual liver fat & ALT responder > 30% + > 17U/L decrease	37.0%	9.0%	p<0.05
PRO-C3	- 8.2%	-1.5%	p<0.05
Enhanced liver fibrosis (ELF) score*	- 0.34	- 0.02	p<0.05
LDL cholesterol (mg/dL)	-12.4	0.0	p<0.05
FGF21	+73.1%	+ 0.9%	p<0.01

^{*}approximately half of denifanstat responders decreased liver fat by ≥50%

ASC40(FASN) NASH IIb Safety Profile

FASCINATE-2 IIb - Blinded data set

TEAL	

Grade 1: 115 (68.5%) Grade 2: 69 (41.1%) Grade 3: 10 (6.0%) Grade 4: 1 (0.6%)

TEAE leading to drug/placebo discontinuation

21

Treatment
Emergent
Serious Adverse
Event (SAE)

11 (all unrelated to study treatment)

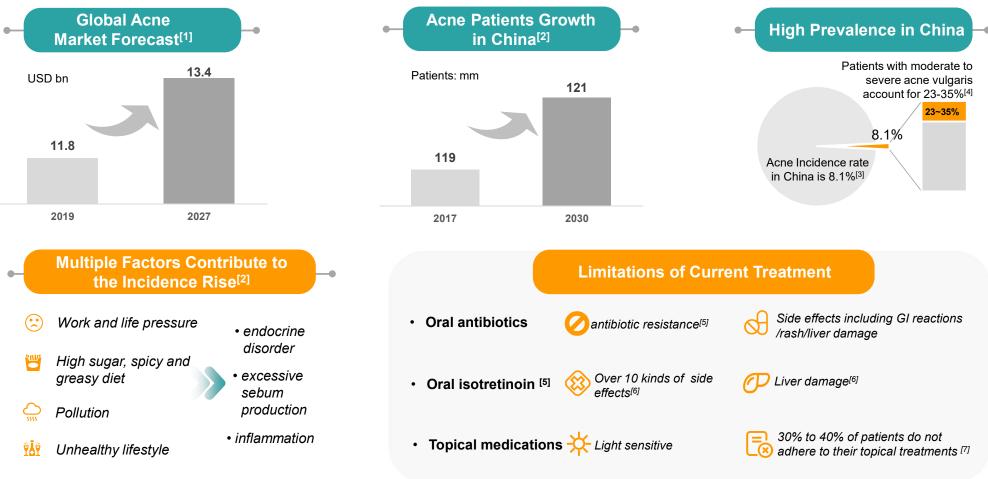
Drug/placeborelated TEAE

Grade 1: 52 (30.1%) Grade 2: 25 (14.9%) All randomized subjects: blinded data set including active and placebo

- Majority of AEs to date were Grade 1 or 2; no Grade ≥3 drug-related AEs
- A planned safety review of unblinded data from all 168 patients conducted by Independent Data Monitoring Committee

- no concerns

- Expect to use Phase 2b results including Al pathology scores to design and power Phase 3
- Startup activities expected 2024


Phase IIb biopsy results of ASC40 for NASH expected in 1Q 2024

ASC40 Acne

Acne: the Eighth Most Prevalent Disease with 640+ mm Patients Globally

References:

- 1. Allied Market Research
- 2. Frost & Sullivan Report
- 3. Li D, Chen Q, Liu Y, et al. BMJ Open. 2017 Apr;7(4):e015354. DOI: 10.1136/bmjopen-2016-015354.
- 4. Shen Y, Wang T, Zhou C, et al.. Acta Derm Venereol. 2012;92(1):40-44. doi:10.2340/00015555-1164
- 5. Guideline for Diagnosis and Treatment of Acne (The 2019 Revised Edition)
- 6. Brzezinski P, Borowska K, Chiriac A, Smigielski J. Dermatol Ther. 2017;30(4):10.1111/dth.12483. doi:10.1111/dth.12483
- 7. Purvis CG, Balogh EA, Feldman SR. Ann Pharmacother. 2021;55(10):1297-1299.

ASC40 (FASN) for Acne: Phase III Clinical Trial Initiated in Dec 2023

ASC40: Innovative Mechanism for Acne Treatment

Human sebum production requires DNL

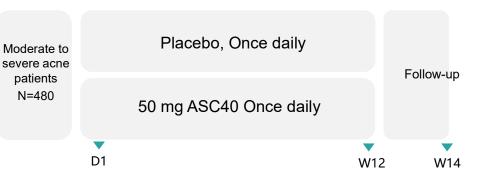
ASC40 is an oral, selective, FASN small molecule inhibitor

FASN is a key enzyme which regulates de novo lipogenesis (DNL)

Human sebum production requires DNL, which is increased in acne and can be suppressed by ASC40

ASC40 Acne Phase III Trial

- Phase III trial of ASC40 initiated in Q4, 2023
- Plan to enroll 480 pts in China


China's top dermatology clinical center –Huashan Hospital, Fudan University– leads the study

1. Guideline for Diagnosis and Treatment of Acne (The 2019 Revised Edition)

Inclusion Criteria

- ◆ 18-40 years old (including 18 and 40); baseline IGA score of 3-4
- ◆ Subjects should have facial lesions counted as follows:
 Inflammatory lesions 30~75 (30 ~ 75 papules, pustules, and nodules, among which no more than 2 nodules)
- ◆ Non-inflammatory lesions 30 ~ 100 (30 ~ 100 open and closed pimples)

Phase III Clinical Trial Design

Primary Endpoints

- ◆ % change in total lesion count from baseline at week 12 of the treatment
- ♦ % change in inflammatory lesion count from baseline at week 12 of the treatment
- ♦ % of patients with a decrease of ≥ 2 points from baseline in the investigator's overall static score (IGA) and reached 0 or 1 point at week 12 of the treatment

Placebo Adjusted Efficacy of 50 mg ASC40, Oral, Once daily is Superior to Placebo Adjusted Efficacy of Winlevi® (not head-to-head comparison)

Endpoints

% change from baseline in total lesion count at week 12[§] (primary endpoint)

% change from baseline in inflammatory lesion count at week 12[§] (key secondary endpoint)

Absolute change from baseline in inflammatory lesion count at week 12 (key secondary endpoint)

% Treatment success at week 12

50 mg ASC40, oral, once daily (n=44), placebo adjusted
Phase II
-27.1
-33.6
-13
14.3

1% Clascoterone cream twice daily for 12 weeks, placebo adjusted				
Phase II	Phase III			
NA	-11.9			
-13.4	-12.8			
-3.2	-5.6			
7.5	11.6			

Efficacy: Compared to placebo, all ASC40 groups (25, 50 and 75 mg) showed statistically significant benefits to acne patients in % change from baseline in total (primary) and inflammatory (key secondary) lesion counts at week 12

Safety: At all doses, oral ASC40 with once-daily, 12-week treatment was safe and well tolerated

In Comparison with Winlevi®: 1%, twice daily, placebo adjusted efficacy of 50 mg ASC40, oral, once daily is superior to Winlevi® in terms of % change from baseline in total and inflammatory lesion counts at week 12 as well as % treatment success at week 12

歌 ill ascletis

§ Data are medians 33

Safety Data Analysis: ASC40 (FASN) for Acne is Safe and Well Tolerated

Category	25mg dose group (n=45)		50mg dose group (n=44)		75 mg dose group (n=45)		Placebo group (n=45)	
	Number	Incidence(%)	Number	Incidence(%)	Number	Incidence(%)	Number	Incidence(%)
Drug-related TEAE	22	48.89%	21	47.73%	28	62.22%	22	48.89%
Drug-related TEAE of severity Grade 3 or higher	0	0.00%	0	0.00%	0	0.00%	0	0.00%
Drug-related severe adverse event (SAE)	0	0.00%	0	0.00%	0	0.00%	0	0.00%
Drug-related TEAE leading to discontinuation of the study drug	1	2.22%	1	2.27%	3	6.67%	0	0.00%
Drug-related TEAE leading to subject withdrawal from the study	1	2.22%	0	0.00%	3	6.67%	0	0.00%
Drug-related TEAE leading to death	0	0.00%	0	0.00%	0	0.00%	0	0.00%

ASC40 rGBM

rGBM: Huge Unmet Medical Needs Globally

48%

15k₪

40~64k[2]

~100%[2]

GBM as 48% of total CNS cancer

Incidence in US

Incidence in China

Recurrent rate

5.8%^[3]

12~14_{months[3]}

WHO IV

No SoC

5yr survival rate

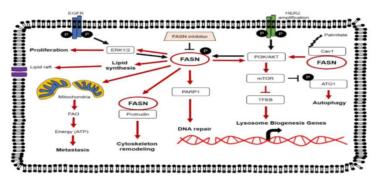
Median OS High malignant grade

For rGBM patients

SoC: standard of care

MoA of FASN: Lipid Metabolism^[4]

- · Tumor cells rely on de novo synthesis of fatty acids for growth
- FASN plays a crucial role in maintaining energy metabolism and cell membrane structural homeostasis in tumor cells
- FASN is the only enzyme in the human body that can convert glucose metabolites to palmitate
- Palmitate saturated fatty acids are important components of the growth chain, polyunsaturated fatty acids, and essential components of cell signaling
- FASN is highly expressed in a variety of tumors, supports tumor cell growth and proliferation, and is associated with tumor invasion


⟨ √ | x |

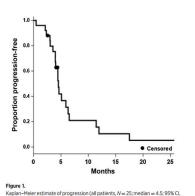
rGBM Treatments are Limited

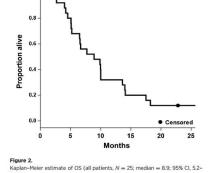
- Surgical resection: lack of high-level evidence-based medical evidence for the benefit of surgical treatment of recurrent glioma
- Radiation therapy: radiation may cause severe brain damage
- **chemotherapy:** no standard chemotherapy for rGBM patients
- TTF: no OS improvement compared with chemotherapty^[6], low affordability

FASN Plays A Key Role in Cancer^[5]

(Molecules. 2020 Sep; 25(17): 3935.)

- 1.Ostrom, Quinn T et al. "CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2015-2019." Neuro-oncology vol. 24, Suppl 5 (2022): v1-v95. doi:10.1093/neuonc/noac202
- 2.中国卫健委, 脑胶质瘤诊疗指南 (2022年版本)
- 3. Stupp R, Mason W P, van den Bent M J, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma [J]. Kelly, William et al.
- 4.Tan A C, Ashley D M, Lopez G Y, et al. Management of glioblastoma: State of the art and future directions [J]
- 5.Fhu CW, Ali A.):3935. doi:10.3390/molecules25173935
- 6.Stupp R, Wong ET, Kanner AA, et al. NovoTTF-100A versus physician's choice chFatty Acid Synthase: An Emerging Target in Cancer. Molecules. 2020;25(17emotherapy in recurrent glioblastoma: a randomised phase III trial of a novel treatment modality. Eur J Cancer. 2012;48(14):2192-2202


ASC40(FASN) for rGBM: Phase III Enrolled 120 Patients as of Sept 2023


ASC40(TVB-2640)+BEV Phase II Study[1]*

Objective Response Rate 56% Complete Response 17% Partial Response 39%^[1]

- 25 patients enrolled
- All treated with ASC40 (TVB-2640) (100 mg/m2 PO QD) plus BEV (10 mg/kg IV D1, 15) until disease progression or toxicity was intolerable

Phase II Results: mPFS=4.6, mOS=8.9

PFS6 Improvement & Safety

- PFS6=31.4%, representing a statistically significant improvement in PFS over the historical Bevacizumab monotherapy PFS of 16% (BELOB Trial) (P=0.008)
- **Safe and tolerated:** ASC40 (TVB-2640) in combination with BEV was safe and well tolerated for the treatment of rGBM pts
- Results have been published on CLINICAL CANCER RESEARCH

Clinical Phase III Trial of ASC40 + BEV to Treat rGBM

Study Design

ASC40 100 mg/m2 once daily+ BEV 10mg/kg once every two weeks

placebo tablet once daily+ BEV 10mg/kg once every two weeks

ORR /PFS/OS every 8 weeks

Primary Study End Point: PFS&OS

China's prestigious brain cancer center--Beijing Tiantan Hospital--leads the study. Other 28 top-tier hospitals participated in clinical research

120 patients enrollment --the basis for pre-planned interim analysis (93 PFS events)— completed as of Q3,2023

If Phase III interim results shows PFS is significant improved, ASC40 for rGBM may obtain the conditional approval

PD

ASC22 HBV

ASC22(PD-L1) for Chronic Hepatitis B Functional Cure

86 MM

People living with HBV in China

1 MM

New incidence in China

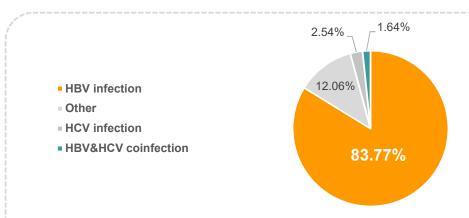
7MM

Infected with HBV in the US, EU and Japan

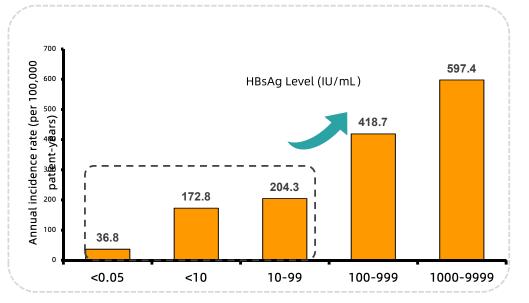
Current standard therapy (NAs) can only suppress the virus

but can not achieve functional cure

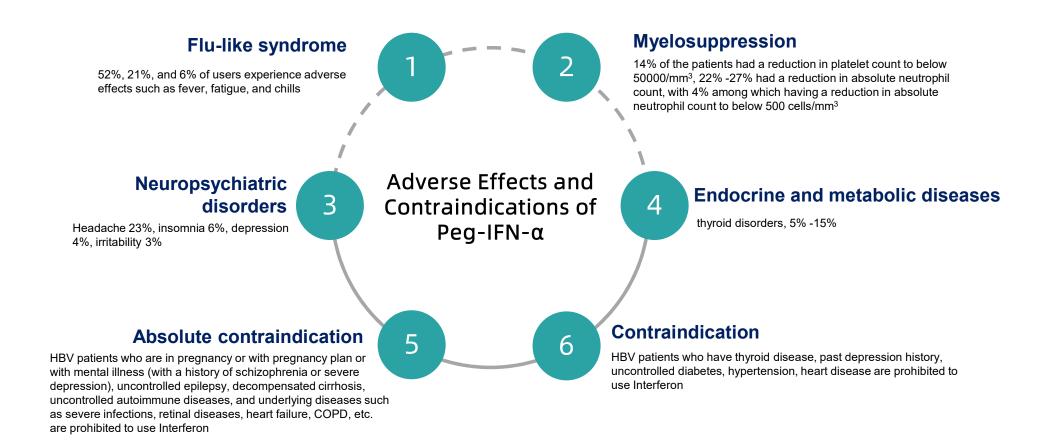
CHB Functional Cure


6 months after treatment

Normal liver function
Negative serum HBV DNA (<20 IU/ml)
Negative serum HBsAg (<0.05 IU/ml)


There is a huge unmet medical needs from HBV patients

HBV Infection is the Leading Cause of liver cancer


- ◆ The relative risk of HCC in patients with chronic HBV is 14~223 times higher than in the normal population¹
- ◆ The lifetime HCC prevalence in HBV carriers ranges from 10% to 25%²
- ♦ Over 80%³ HCC patients in China are caused by HBV infection

Patients with low HBsAg levels remain at high risk of hepatocellular carcinoma (HCC)

Interferon: Various Adverse Effects and Contraindications When Used for HBV

^{1.} Chinese Journal of Infectious Diseases, 2023,41(1): 3-28.

^{2.} From the specification of Peginterferon α-2a

^{3.} Expert Committee on Clinical Management of Adverse Reactions of Interferon-α Therapy for Chronic Viral Hepatitis [J] Chinese Journal of Experimental and Clinical Infectious Diseases (Electronic Edition), (2014).

21.6% Patients (Baseline HBsAg≤100) Achieved HBsAg Loss at End of 24-Wk Treatment

W48

Mechanism of PD-1/PD-L1 Pathway for Treatment of CHB

APC CD8 T IFN-γ 1 Blockade antibody Hepatocyte Hepatocyte Liver Hepatocyte PD-1 CD244 CTLA-4 TIM

ASC22 is the Leading Candidate of PD-1/PD-L1 for CHB Treatment

Pipeline	Company	Target	Clinical stage	Clinical trial No.
ASC22	Ascletis	PD-L1	Phase IIb	NCT04465890
RG6084 (RO7191863)	Roche	CpAM/TLR7/siRNA/PEG- IFN/PD-L1	Phase II	NCT0422571
GS4224	Gilead	PD-L1	Phase I	ACTRN12618001957 280
AB-101	Arbutus	PD-L1	Phase I	NCT05960240
ARB-272572	Arbutus	PD-1	Pre-IND	NA
ALG-093453	Aligos	PD-L1	Pre-IND	NA
ALG-093702	Aligos	PD-L1	Pre-IND	NA

ASC22 Phase IIb Expansion Cohort: enrolled 49 patients with baseline HBsAg≤100 IU/mL

1.0mg/kg ASC22 Q2W+NAs (n=40)	Follow-Up
Placebo Q2W+NAs (n=9)	Follow-Up

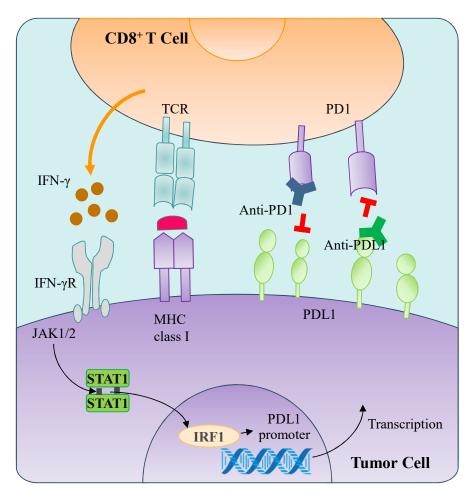
W24

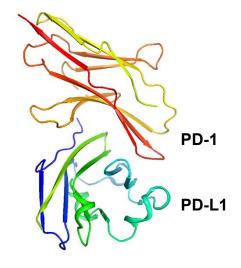
D0

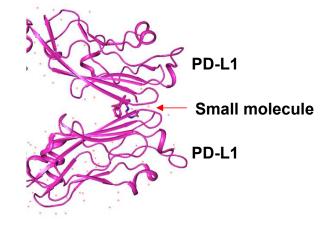
Interim results from Phase IIb expansion cohort of ASC22

	Rate of HBsAg loss after 24-week treatment	HBsAg loss after 24- week follow-up	Safety profile
ASC22+NAs	ASC22 Cohort: 21% (4/19) Placebo Cohort: 0 (0/6)	In follow-up, unknown	Generally safe and well tolerated. Most of drug related AE were Grade 1 or 2.

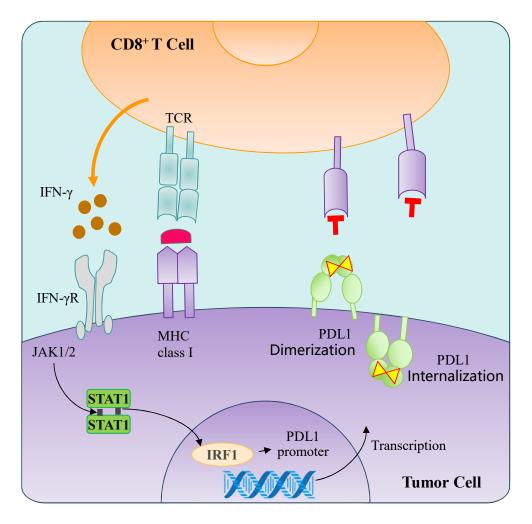
*Interim analysis was conducted when approximately 50% of enrolled patients completed 24week treatment of ASC22 or placebo

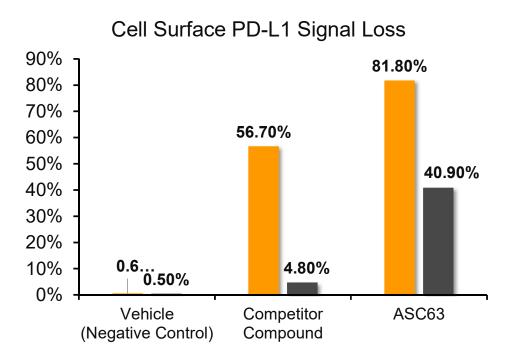

^{1.} Peng G, et al. PD-1 upregulation is associated with HBV-specific T cell dysfunction in chronic hepatitis B patients. Mol Immunol. 2008;45(4):963-70.


^{2.} B Ye, et al. T-cell exhaustion in chronic hepatitis B infection: current knowledge and clinical significance. Cell Death Dis. 2015 Mat 19;6:e1694.


ASC61 Solid Tumors

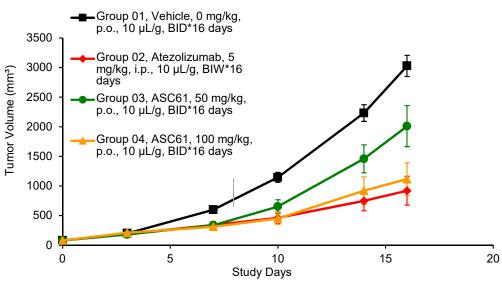
PD-L1 Small Molecule Inhibitors: Challenges and Opportunities




- Antibodies block PD-1/PD-L1 interface
- Traditional small molecules not good at inhibiting protein-protein interaction

 PD-L1 small molecule inhibitors induce PD-L1 dimerization and internalization, preventing PD-1/PD-L1 interaction

ASC61: Induce PD-L1 Dimerization and Sustained Internalization


ASC61

- Potently induce PD-L1 dimerization and internalization (orange)
- Induce long-lasting PD-L1 signal loss from cell surface (after compound removed from medium for 16 hours, still resulted in 40% PD-L1 signal loss) (black)

Source: Ascletis data

ASC61 showed comparable antitumor activities as the FDA- approved PD-L1 antibody, Atezolizumab, in mouse tumor models

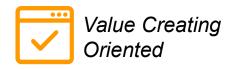
	Description	Tumor Size (mm³) ^a on day 16	T/C (%) on day 16 ^b	TGI (%) on day 16	p value compare with G1°	p value compare with G2 ^d
	Vehicle, p.o., 10 μL/g, p.o., BID*3 weeks	3027.54±179.16	-	-	-	-
	Atezolizumab, 5 mg/kg, i.p., BIW*3 weeks	919.73±244.00	30.38	69.62	<0.001	-
	ASC61, 50 mg/kg, p.o., BID*3 weeks	2009.72±346.48	66.38	33.62	0.0954	0.0362
)	ASC61, 100 mg/kg, p.o., BID*3 weeks	1115.61±275.17	36.85	63.15	<0.001	0.954

Note: PD-1/PD-L1 dKI HuGEMM mice with human PD-1 and PD-L1 gene double knock-in are an ideal model for testing human-specific PD-1/PD-L1 immune checkpoint inhibitor drugs.

Note: a. Mean ± SEM; b. tumor volume treatment/control; c. compared with group 1 tumor volume on day 16 using Tukey's HSD test; d. compared with group 2 tumor volume on day 16 using Tukey's HSD test.

- Oral administration of ASC61 resulted in significant tumor growth inhibitions in mouse tumor models. Antitumor activity of ASC61 was shown to be dose-dependent.
- No significant difference of body weight was observed among all groups during studies, indicating that ASC61 was generally well-tolerated in mice.

Summary



Corporate Strategy--Focus on Differentiation

- Completed existing pipeline review and assessment
- Made a strategic optimization of resources on 12 clinical stage assets
- focuses on the pipeline which has global FIC or BIC potential

- Sales team for HCV dismissed in H1 2023 due to market shrinkage
- Now the majority staff is for discovery and clinical development
- Co-commercialization with partners in the future

- Allocate increasing resources to early discovery and clinical development
- More global FIC/BIC candidates with edges in the world or in China

- Ascletis has a proven track record of BD capabilities
- Seek out-license partnership to maximize the value of the pipeline

Focus on Advantages + Unmet Needs + Core Pipeline

Repurchased Over 45 million Shares *

Communications

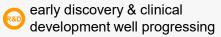
Expand channels to enhance investor understanding

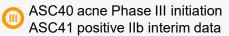
Timely, sincere, and transparent

Take investor opinions and feedback seriously

Market Confidence

Grant 200mm HK\$ for buyback


45+mm shares repurchased to date*

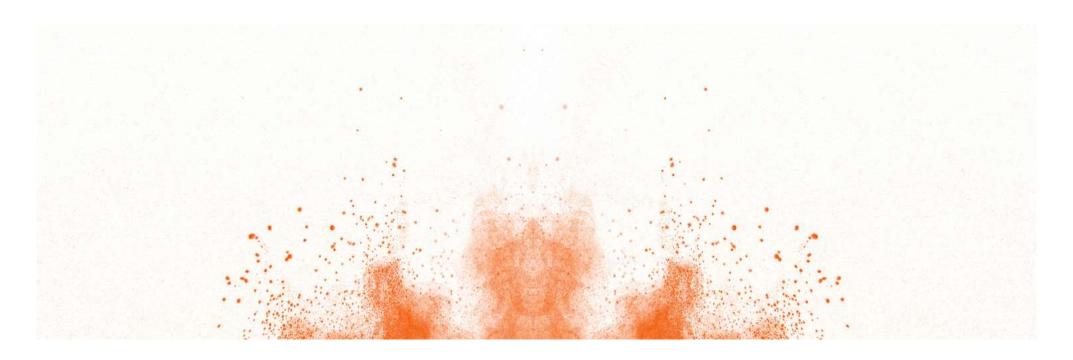


85+mm HK\$ used*

Intrinsic Value

More catalysts scheduled

SFC 中央線



48 *As of Dec.22, 2023

Strong Execution--Key Milestones

	Indication	Catalysts	Progress
2023Q2	acne	Topline Phase II clinical results of ASC40 (FASN) for treatment of acne	
2023Q3	rGBM	Complete the enrollment of ~120 rGBM patients in Phase III clinical of ASC40(FASN), which is needed for the planned interim analysis with 93 PFS events.	
2023Q3	HBV	Topline interim results from Phase IIb expansion cohort of ASC22 (PD-L1) for functional cure of CHB in patients with the baseline HBsAg≤ 100	
2023Q4	acne	Initiation of Phase III clinical trial of ASC40 (FASN) for treatment of acne	
2024Q1	NASH	Topline interim results from Phase II clinical trial of ASC41(THR-β) of liver fat reduction, LDL-C reduction, liver enzymes and biomarkers of approximately 40 NASH patients after 12-week treatment	
2024Q1	NASH	Phase IIb topline clinical results from 168 biospy-proven NASH patients of Phase II clinical trial of ASC40(FASN) after 52 weeks of treatment	>>>

Thanks

Innovative cures liberate life to the fullest

